《中国测试》期刊群

首页 - 《中国测试》期刊群 - 传感测试2020

磁致伸缩导波管道条带传感器性能影响因素分析

发布时间:2022-07-01浏览量:1864
作者:耿海泉1, 邹刚1, 王悦民2, 朱龙翔1 作者单位:1. 海军航空大学(青岛校区),山东 青岛 266041;
2. 海军工程大学动力工程学院,湖北 武汉 430033

Analysis of the factors influencing the performance of magnetostrictive guided wave pipeline strip sensor
GENG Haiquan1, ZOU Gang1, WANG Yuemin2, ZHU Longxiang1
1. Naval Aviation University (Qingdao Campus), Qingdao 266041, China;
2. College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract: The effects of the structure of the magnetostrictive strip sensor, the bias magnetic field and the excitation current on the performance of the sensor have been studied by experimental method. The results show that the structure of the sensor plays an important role in the mode control of the guided wave, and the longitudinal guided wave can be excited by means of the circumferential or axial sticking of the Fe-Co strip and the longitudinal pre magnetization; the torsional guided wave can be excited by means of the circumferential sticking of the permanent magnet, while the excitation effect of the permanent magnet at different circumferential positions is different, when the permanent magnet is at the opening of the strip, the torsional wave excited is more pure. With the increase of the bias magnetic field, the amplitude of the guided wave increases first and then decreases, and the amplitude of the guided wave at each frequency has a maximum value. The magnitude of the excitation current affects the amplitude and mode purity of the torsional wave. With the increase of the excitation current, the amplitude of the torsional wave increases first approximately linearly, and then tends to remain or decrease. When the excitation current is large, the detection signal has a large amplitude of longitudinal wave, reducing the excitation current can reduce the amplitude of longitudinal wave, but it is difficult to eliminate.
Keywords: magnetostrictive guided waves;strip sensor;bias magnetic field;excitation current
2020, 46(12):156-162  收稿日期: 2020-05-25;收到修改稿日期: 2020-07-08
基金项目: 国防预研基金(9140A27020115JB11001)
作者简介: 耿海泉(1989-),男,山东邹平市人,讲师,博士,主要从事飞行器结构健康监测和故障诊断技术研究
参考文献
[1] KIM Y Y, KWON Y E. Review of magnetostrictive patch transducers and applications in ultrasonic nondestructive testing of waveguides[J]. Ultrasonics, 2015, 62: 3-19
[2] CHO S H, KIM H W, KIM Y Y. Megahertz-range guided pure torsional wave transduction and experiments using a magnetostrictive transducer[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2010, 57(5): 1225-1229
[3] KIM H J, LEE J S, KIM H W, et al. Numerical simulation of guided waves using equivalent source model of magnetostrictive patch transducers[J]. Smart Materials and Structures, 2015, 24(1): 15006
[4] 徐书根, 王威强, 赵培征, 等. 磁致伸缩导波技术检测管道缺陷[J]. 无损检测, 2008(7): 49-52
[5] 魏争, 黄松岭, 赵伟, 等. 磁致伸缩管道缺陷超声导波检测系统研制[J]. 电测与仪表, 2013, 50(573): 21-25
[6] 朱龙翔, 王悦民, 孙丰瑞. 磁致伸缩扭转导波管道缺陷检测数值模拟和实验研究[J]. 中南大学学报(自然科学版), 2014, 45(9): 3001-3007
[7] ZHANG X W, TANG Z F, LÜ F Z, et al. Helical comb magnetostrictive patch transducers for inspecting spiral welded pipes using flexural guided waves[J]. Ultrasonics, 2016, 74: 1-10
[8] LIU Z, HU Y, FAN J, et al. Longitudinal mode magnetostrictive patch transducer array employing a multi-splitting meander coil for pipe inspection[J]. NDT&E International, 2016, 79: 30-37
[9] 李志农, 孟宁, 龙盛蓉. 激励频率对扭转模态磁致伸缩导波检测性能影响[J]. 华侨大学学报(自然版), 2017(5): 48-53
[10] 蔡瑞, 李勇, 刘天浩, 等. 金属小径管损伤电磁超声导波检测的高效混合仿真方法及导波换能器可行性研究[J]. 机械工程学报, 2020, 56(10): 34-41
[11] 耿海泉, 王悦民, 陈乐, 等. 磁致伸缩扭转导波小管径弯管检测[J]. 国防科技大学学报, 2018, 2018(1): 168-175
[12] 王悦民, 邓文力, 耿海泉, 等. 超声导波激励频率选取对其模式控制的影响[J]. 机械工程学报, 2017, 53(24): 118-123

  • 地址:四川省成都市玉双路10号
  • 邮箱:zgcsjs@163.com(编辑部) zgcs8440@nimtt.com(综合发展部)
  • 电话:86-28-84404872 84403677 84406505 84404886(编辑部) 86-28-84404108 84406812(综合发展部)丨86-28-84403600 84406307(新闻中心)
  • 传真:86-28-84403677

蜀ICP备11014963号-1 《中国测试》杂志社 版权所有

今日总访问量(单位:次):638503 技术支持:天健世纪

业内最新资讯动态 请关注微信公众号