- 地址:四川省成都市玉双路10号
- 邮箱:zgcsjs@163.com(编辑部) zgcs8440@nimtt.com(综合发展部)
- 电话:86-28-84404872 84403677 84406505 84404886(编辑部) 86-28-84404108 84406812(综合发展部)丨86-28-84403600 84406307(新闻中心)
- 传真:86-28-84403677
发布时间:2023-01-05浏览量:1785
作者:卢忠山, 袁建华 作者单位:三峡大学电气与新能源学院,湖北 宜昌 443002
Ultra-short term power prediction of photovoltaic power generation system based on EEMD-LSTM method
LU Zhongshan, YUAN Jianhua
College of Electrical and New Energy, China Three Gorges University, Yichang 443002, China
Abstract: An ultra-short-term power prediction model of photovoltaic power station based on EEMD-LSTM is proposed in order to improve the accuracy of ultra-short-term power prediction of photovoltaic power generation system. By taking the power data of a 50 MW photovoltaic power station in 2017 as a sample, the weather conditions are divided into two categories: non-abrupt weather and abrupt weather according to the classification index of weather factors. EEMD is used to decompose the historical power data of classified weather into IMF1-IMF5 and residual components. The correlation between each component and the original data is calculated, and the strongly correlated components are sent to LSTM neural network. The final photovoltaic power prediction results are obtained by superimposing the results of each sub-component. BP, SVM, KNN and LSTM models are built synchronously to compare the errors with the proposed models. The results show that weather factors have great influence on photovoltaic output power; When a single model predicts abrupt weather with large power fluctuation, it would produce large errors. After EEMD decomposition of power data, detail features can be fully extracted, which makes EEMD-LSTM coupling model improve by 21.23%, 11.92% and 25.67% on eRMSE, eMAPE and eTIC respectively compared with LSTM model. The proposed model effectively improves the accuracy of ultra-short-term prediction of PV power, and meets the requirements of ultra-short-term prediction of PV power generation system.
Keywords: photovoltaic power generation;super short term;power prediction;mode decomposition
2022, 48(12):125-132 收稿日期: 2021-07-13;收到修改稿日期: 2021-09-22
基金项目: 国家自然科学基金项目(61603212)
作者简介: 卢忠山(1992-),男,湖北宜昌市人,硕士研究生,专业方向为人工智能在电力系统的应用研究
参考文献
[1] 陈功, 许杨, 袁鑫, 等. 柔性光伏电池阵列电气参数建模研究[J]. 中国测试, 2020, 46(5): 134-142
[2] 吴坚, 郑照红, 薛家祥. 深度置信网络光伏发电短时功率预测研究[J]. 中国测试, 2018, 44(5): 6-11
[3] WANG H, LEI Z, ZHANG X, et al. A review of deep learning for renewable energy forecasting[J]. Energy Conversion and Management, 2019, 198: 111799
[4] 谢晓頔, 潘霄峰, 高云峰, 等. GSIG分布式光伏云缓存调度研究[J]. 中国测试, 2020, 46(6): 13-17
[5] 叶興, 薛家祥. 改进型LSTM网络光伏发电功率预测研究[J]. 中国测试, 2019, 45(11): 14-20
[6] BLAGA R, SABADUS A, STEFU N, et al. A current perspective on the accuracy of incoming solar energy forecasting[J]. Progress in Energy and Combustion Science, 2019, 70: 119-144
[7] 姚光辉. 光伏并网发电系统设计及MPPT技术研究[D]. 杭州: 浙江大学, 2014.
[8] MA T, YANG H, LU L. Solar photovoltaic system modeling and performance prediction[J]. Renewable and Sustainable Energy Reviews, 2014, 36: 304-315
[9] MAH A, NB B, KB C, et al. Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks[J]. Renewable Energy, 2021, 171: 191-209
[10] 陈志宝, 丁杰, 周海, 等. 地基云图结合径向基函数人工神经网络的光伏功率超短期预测模型[J]. 中国电机工程学报, 2015, 35(3): 561-567
[11] WANG H, YI H, PENG J, et al. Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network[J]. Energy Convers Manage, 2017, 153: 409-422
[12] WEN L, ZHOU K, YANG S, et al. Optimal load dispatch of community micro grid with deep learning based solar power and load forecasting[J]. Energy, 2019, 171(15): 1053-1065
[13] MASSAOUDI M, CHIHI I, SIDHOM L, et al. Enhanced random forest model for robust short-term photovoltaic power forecasting using weather measurements[J]. Energies, 2021, 14(13): 1-20
[14] HUANG C, KUO P. Multiple-input deep convolutional neural network model for short-term photovoltaic power forecasting[J]. IEEE Access, 2019, 7: 74822-74834
[15] ALZAHRANI A , SHAMSI P , DAGLI C, et al. Solar irradiance forecasting using deep neural networks[J]. Procedia Comput, 2017, 114: 304-313
[16] JIAN Z, YAN R, GAO R, et al. Performance enhancement of ensemble empirical mode decomposition[J]. Mechanical Systems & Signal Processing, 2010, 24(7): 2104-2123
[17] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780
业内最新资讯动态 请关注微信公众号