《中国测试》期刊群

首页 - 《中国测试》期刊群 - 生态环保测试

农田土壤中微塑料测试方法比较及应用研究

发布时间:2023-01-05浏览量:1991
作者:汤庆峰, 王佳敏, 李琴梅, 高峡, 邓平晔, 邵鹏, 魏炜, 王红燕 作者单位:北京市科学技术研究院分析测试研究所(北京市理化分析测试中心),北京 100089

Comparison and application of test methods for microplastics in farmland soil
TANG Qingfeng, WANG Jiamin, LI Qinmei, GAO Xia, DENG Pingye, SHAO Peng, WEI Wei, WANG Hongyan
Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089,China
Abstract: Microplastics refer to plastics with particle size less than 5 mm, including fragments, fibers, particles, foaming and other different morphological types. As a new type of environmental pollutants, microplastic pollution has become a global environmental problem. After entering the farmland, microplastics will have an adverse impact on soil physical and chemical properties, microbial community and soil animal and plant growth, damage soil health and affect agricultural production and the quality of agricultural products. It is an important foundation and premise to carry out the research of microplastics and construct an accurate analysis method. In this paper, the test methods of microplastics in farmland soil were compared, and the advantages and disadvantages of visual inspection method, scanning electron microscope / energy spectrum method, pyrolysis GC-MS and micro Fourier transform infrared spectroscopy in the study of microplastics were compared and analyzed. The results show that micro Fourier transform infrared spectroscopy can not only characterize the color, size and morphology of micro plastics, but also identify their components. It is an ideal method for the analysis and identification of soil micro plastics. Based on micro Fourier transform infrared spectroscopy, the distribution and composition characteristics of microplastics in farmland soil in Xinjiang were analyzed. The shapes of microplastics were mainly thin film (35.2%), granular (27.8%) and fibrous (22.5%); Particle size <200 μm(44.2%),200-500 μm(32.5%),500-1000 μm(12.8%),1 000-5000 μm(10.5%); The main materials are polyethylene (60.2%), polypropylene (18.3%) and polyvinyl chloride (8.6%).
Keywords: soil;microplastics;visual inspection;scanning electron microscopy/energy dispersive spectrometry;pyrolysis gas chromatography-mass spectrometry;micro Fourier transform infrared spectroscopy
2022, 48(10):145-151  收稿日期: 2021-10-28;收到修改稿日期: 2021-11-11
基金项目: 北京市科学技术研究院高水平创新团队计划项目(HIT201902)
作者简介: 汤庆峰(1976-),男,山东郓城县人,高级工程师,硕士,主要研究方向为环境污染物分析与评价
参考文献
[1] HARTMANN N B, H&#220;FFER T, THOMPSON R C, et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris[J]. Environmental Science & Technology, 2018, 53(3): 1039-1047
[2] DE SOUZA MACHADO A A, KLOAS W, ZARFL C, et al. Microplastics as an emerging threat to terrestrial ecosystems[J]. Global Change Biology, 2018, 24(4): 1405-1416
[3] DONG Y M, GAO M L, SONG Z G, et al. As(Ⅲ) adsorption on to differentsized polystyrene microplastic particles and its mechanism[J]. Chemosphere, 2020, 239: 124792
[4] 汤庆峰, 高峡, 李琴梅, 等. 农田土壤微塑料污染研究现状与问题思考[J]. 安徽农业科学, 2021, 49(15): 72-78,84
[5] KARLSSON T M, K&#196;RRMAN A, ROTANDER A, et al. Comparison between manta trawl and in situ pump filtration methods, and guidance for visual identification of microplastics in surface waters[J]. Environ Sci Pollut Res, 2020, 27: 5559-5571
[6] 付钧泽, 姜红. 扫描电镜/能谱法结合多元统计学无损检验烟用接装纸的研究[J]. 中国造纸, 2021, 40(4): 38-45
[7] 徐国荣, 黄琳, 丁宏刚, 等. 燃煤超细颗粒物的扫描电镜图像优化方法[J]. 中国测试. https://kns.cnki.net/kcms/detail/51.1714.TB.20210707.1015.005.html.
[8] ASAMOAH B O, AMOANI J, ROUSSEY M, et al. Laser beam scattering for the detection of flat, curved, smooth, and rough microplastics in water[J]. OptRev, 2020, 27: 217-224
[9] LUO H, LI Y, ZHAO Y, et al. Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics[J]. Environmental Pollution, 2020, 257: 113475
[10] LEE K W, SHIM W J, KWON O Y, et al. Size-Dependent Effects of Micro Polystyrene Particles in the Marine Copepod Tigriopus japonicus[J]. Environmental Science & Technology, 2013, 47(19): 11278-11283
[11] DEKKIFF J H, REMY D, KLASMEIE R J, et al. Occurrence and spatial distribution of microplastics in sediments from norderney[J]. Environmental Pollution, 2014, 186: 248-256
[12] LUO H, ZHAO Y, LI Y, et al. Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids[J]. Sci Total Environ, 2020, 714: 136862
[13] 汤庆峰, 李琴梅, 魏晓晓, 等. 环境样品中微塑料分析技术研究进展[J]. 分析测试学报, 2019, 38(8): 1009-1019
[14] 姜 红, 朱晓晗, 何歆沂, 等. 差分拉曼光谱法对塑料瓶的鉴别分析[J]. 中国测试, 2020, 46(8): 76-79,100
[15] BLASING M, AMELUNG W. Sci. Plastics in soil: Analytical methods and possible sources[J]. Total Environ., 2018, 612: 422-435
[16] 潘永华, 杨成波, 张凌, 等. 基于拉曼光谱成像技术无损检测滤棒内植透明爆珠[J]. 中国测试, 2021, 47(5): 76-81
[17] GOMIERO A, OYSAED K B, AGUSTSSON T, et al. First record of characterization, concentration and distribution of microplastics in coastal sediments of an urban fjord in south west Norway using a thermal degradation method[J]. Chemosphere, 2019, 227: 705-714
[18] DIERKES G, LAUSCHKE T, BECHER S, et al. Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography[J]. Analytical and Bioanalytical Chemistry, 2019, 411(26): 6959-6968
[19] 余建平. 基于 TGA-FTIR-GC/MS 联机技术的环境中微塑料定量分析研究[D]. 杭州: 浙江工业大学, 2019.
[20] 王菊英, 张微微, 穆景利, 等. 海洋环境中微塑料的分析方法: 认知和挑战[J]. 中国科学院院刊, 2018, 33: 35-45
[21] DRIS R, GASPERI J, ROCHER V, et al. Microplastic contamination in an urban area: a case study in Greater Paris[J]. Environmental Chemistry, 2015, 12(5): 592-599
[22] 汤庆峰, 李琴梅, 王佳敏, 等. 显微-傅里叶变换红外光谱鉴别分析微塑料[J]. 中国塑料, 2021, 35(8): 172-180

  • 地址:四川省成都市玉双路10号
  • 邮箱:zgcsjs@163.com(编辑部) zgcs8440@nimtt.com(综合发展部)
  • 电话:86-28-84404872 84403677 84406505 84404886(编辑部) 86-28-84404108 84406812(综合发展部)丨86-28-84403600 84406307(新闻中心)
  • 传真:86-28-84403677

蜀ICP备11014963号-1 《中国测试》杂志社 版权所有

今日总访问量(单位:次):638503 技术支持:天健世纪

业内最新资讯动态 请关注微信公众号