- 地址:四川省成都市玉双路10号
- 邮箱:zgcsjs@163.com(编辑部) zgcs8440@nimtt.com(综合发展部)
- 电话:86-28-84404872 84403677 84406505 84404886(编辑部) 86-28-84404108 84406812(综合发展部)丨86-28-84403600 84406307(新闻中心)
- 传真:86-28-84403677
发布时间:2023-01-05浏览量:1757
作者:武松, 马永光 作者单位:华北电力大学自动化系,河北 保定 071003
Prediction of NOx emission from power plant boiler based on mixed deep learning network
WU Song, MA Yongguang
Department of Automation, North China Electric Power University, Baoding 071003, China
Abstract: To reduce nitrogen oxide (NOx) emissions from coal-fired power plant boiler, optimizing combustion and denitration control, a hybrid deep learning network model based on data-driven fusion of convolutional neural network (CNN) and bidirectional long short memory network (BiLSTM) is proposed, and the network hidden layer output global attention mechanism (GAM) is introduced to predict NOx emissions from boileroutlet. Firstly, the big data of boiler operation history of a 2×300 MW power station is extracted and preprocessed. Then, on the basis of determining the input variables of the model, the time delay between each input variable and NOx emission is calibrated by mutual information (MI) theory, and the sample sequence is reconstructed. Finally, the CNN-BiLSTM-GAM model is constructed and the prediction effect of this model is compared with several other typical prediction models. Experimental results show that the root mean square error (RMSE), mean absolute percentage error (MAPE) and determination coefficient (R-Square) of the model are 1.866, 0.44% and 0.983, which are the best among all models, indicating that this model has higher prediction accuracy and better generalization ability than other models.
Keywords: power plant boiler;NOx emission prediction;deep learning;convolutional neural network;bidirectional long short memory network;global attention mechanism;mutual information
2022, 48(10):166-174 收稿日期: 2022-03-31;收到修改稿日期: 2022-07-27
基金项目: 河北省科技厅重点研发计划(18214523)
作者简介: 武松(1990-),男,河北石家庄市人,硕士研究生,专业方向为发电系统建模、仿真与优化控制
参考文献
[1] 康俊杰. 电站锅炉燃烧和SCR脱硝系统一体化建模与优化控制研究[D]. 北京: 华北电力大学, 2021.
[2] 杨国田, 王英男, 谢锐彪, 等. 基于变量选择的深度置信神经网络锅炉烟气NO x排放预测[J]. 热力发电, 2020, 49(4): 34-40
[3] 刘菡, 王英男, 李新利, 等. 基于互信息–图卷积神经网络的燃煤电站NO x排放预测[J]. 中国电机工程学报, 2022, 42(3): 1052-1060
[4] 谢锐彪, 李新利, 王英男, 等. 基于粒子群优化的双向门控循环神经网络燃煤电厂NO x排放预测[J]. 热力发电, 2021, 50(10): 87-94
[5] LV Y, LV X G, FANG F, et al. Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants[J]. Energy, 2020, 192: 116589-116601
[6] 朱钰森, 金晓明, 张泉灵. 基于聚类与加权连接的锅炉NO x 排放量多模型建模[J]. 控制工程, 2019, 26(4): 688-693
[7] TAN P, HE B, ZHANG C, et al. Dynamic modeling of NO x emission in a 660MW coal-fired boiler with long short-term memory[J]. Energy, 2019, 176: 429-436
[8] 刘岳, 于静, 金秀章. 基于特征优化和改进长短期记忆神经网络的NO x质量浓度预测[J]. 热力发电, 2021, 50(7): 162-169
[9] LI N, HU Y. The deep convolutional neural network for NO x emission prediction of a coal-fired boiler[J]. IEEE Access, 2020, 8: 85912-85922
[10] 王英男. 燃煤锅炉的NOx排放预测与控制研究[D]. 北京: 华北电力大学, 2021.
[11] 李楠. 基于火焰自由基成像的NOx排放预测算法研究[D]. 北京: 华北电力大学, 2017.
[12] 孙嘉, 张建辉, 卜佑军, 等. 基于CNN-BiLSTM模型的日志异常检测方法[J]. 计算机工程, 2022, 48(7): 151-158,167
[13] 李秉晨, 于惠钧, 丁华轩, 等. 基于CEEMD和 LSTM-ARIMA 的短期风速预测[J]. 中国测试, 2022, 48(2): 163-168
[14] 叶興, 薛家祥. 改进型 LSTM 网络光伏发电功率预测研究[J]. 中国测试, 2019, 45(11): 14-20
[15] 李晓, 卢先领. 基于双重注意力机制和GRU 网络的短期负荷预测模型[J]. 计算机工程, 2022, 48(2): 291-296,305
业内最新资讯动态 请关注微信公众号