- 地址:四川省成都市玉双路10号
- 邮箱:zgcsjs@163.com(编辑部) zgcs8440@nimtt.com(综合发展部)
- 电话:86-28-84404872 84403677 84406505 84404886(编辑部) 86-28-84404108 84406812(综合发展部)丨86-28-84403600 84406307(新闻中心)
- 传真:86-28-84403677
发布时间:2023-01-05浏览量:1912
作者:舒少波1, 黄林果1, 谭清2 作者单位:1. 成都市石油化学工业园区环境监测站,四川 成都 610066;
2. 四川省成都生态环境监测中心站,四川 成都 610066
Analysis of VOCs pollution characteristics in an electronic information industry area in summer
SHU Shaobo1, HUANG Linguo1, TAN Qing2
1. Chengdu Environmental Monitoring Station for Petrochemical Industrial Park, Chengdu 610066, China;
2. Chengdu Ecological & Environmental Monitoring Center, Chengdu 610066, China
Abstract: In order to understand the characteristics of ozone pollution and volatile organic compounds in an electronic information industry area in summer, the ozone pollution process and the characteristic components of VOCs were analyzed combined with data, and the source of VOCs was analyzed. A total of 94 compounds were detected in this study, and the concentration order of various VOCs is alkanes > halogenated hydrocarbons > aromatic hydrocarbons > OVOCs > olefins > alkynes. According to the analysis of ozone generation potential, the overall concentration level of ozone is obviously related to the ozone generation potential of VOCs and weather factors. Select the period of high ozone value to analyze the ozone pollution process in combination with nitrogen oxides, PM2.5 and VOCs. Ozone shows a regular unimodal change, which is opposite to NOx and PM2.5. The source analysis results of PMF model show that during the high ozone value period, the industrial emission source dominated by benzene homologues has the highest contribution rate to ozone generation in the industrial area.
Keywords: electronic information industry zone;ozone;volatile organic compounds(VOCs);source analysis
2022, 48(10):175-180 收稿日期: 2022-07-06;收到修改稿日期: 2022-09-13
基金项目:
作者简介: 舒少波(1988-),男,四川彭州市人,工程师,主要从事环境分析与检测
参考文献
[1] CHANG D, SONG Y, LIU B. Visibility trends in six mega-citiesin China 1973-2007[J]. Atmospheric Research, 2009, 94(2): 161-167
[2] ROHDE R A, MULLER R A. Air pollution in China: mapping of concentrations and sources[J]. Plos One, 2015, 10(8): 1-14
[3] 薛俊海, 邱兆军, 吕焕明, 等. 热脱附-气相色谱/质谱联用法测定家具中释放的 27 种苯系物[J]. 中国测试, 2020, 46(11): 53-58
[4] 王东哲. 全球挥发性有机化合物定义解析[J]. 现代涂料与涂装, 2015, 18(9): 33-36
[5] ZHANG Y H, LI C, YAN Q S, et al. Typical industrial sectorbased volatile organic compounds source profiles and ozoneformation potentials in Zhengzhou, China[J]. Atmospheric Pollution Research, 2020, 11(5): 841-850
[6] 李佳, 陈勇, 张渝, 等. 挥发性有机物与非甲烷总烃的相关性研究[J]. 中国测试, 2019, 45(12): 75-82
[7] 张文斌, 谭丽, 王赞春, 等. 重庆市沙坪坝区大气 VOCs 与健康影响评估[J]. 中国测试, 2017, 43(3): 43-48
[8] LI L Y, XIE S D, ZENG L M, et al. Characteristics of volatileorganic compounds and their role in ground-level ozone formationin the Beijing-Tianjin-Hebei region, China[J]. Atmospheric Environment, 2015, 113: 247-254
[9] XU Z N, HUANG X, NIE W, et al. Influence of synoptic condition and holiday effects on VOCs and ozone production in the YangtzeRiver Delta region, China[J]. Atmospheric Environment, 2017, 168: 112-124
[10] 曹梦瑶, 林煜棋, 章炎麟. 南京工业区秋季大气挥发性有机物污染特征及来源解析[J]. 环境科学, 2020, 41(6): 2565-2576
[11] 曾鹏, 辛存林, 于奭, 等. 典型西南工业城市柳州市核心区大气污染物时空分布与气象因素研究[J]. 环境科学学报, 2020, 40(1): 13-26
[12] CARTER W P L. Development of ozone reactivity scales for volatileorganic compounds[J]. Air & Waste, 1994, 44(7): 881-899
[13] GROSJEAN D. In situ organic aerosol formation during a smog episode: estimated production and chemical functionality[J]. Atmospheric Environment. Part A. General Topics, 1992, 26(6): 953-963
[14] POLISSAR A V, HOPKE P K, PAATERO P, et al. The aerosol atBarrow, Alaska: long-term trends and source locations[J]. Atmospheric Environment, 1999, 33(16): 2441-2458
[15] 闫慧, 张维, 侯墨, 等. 我国地级及以上城市臭氧污染来源及控制区划分[J]. 环境科学, 2020, 41(12): 4-13
[16] 兰梦迪. 宜春市臭氧污染特征及其影响因素分析[J]. 河南科技, 2022, 779(9): 114-119
[17] 刘齐, 卢星林, 曾鹏, 等. 柳州市春季大气挥发性有机物污染特征及源解析[J]. 环境科学, 2021, 42(1): 65-74
业内最新资讯动态 请关注微信公众号