- 地址:四川省成都市玉双路10号
- 邮箱:zgcsjs@163.com(编辑部) zgcs8440@nimtt.com(综合发展部)
- 电话:86-28-84404872 84403677 84406505 84404886(编辑部) 86-28-84404108 84406812(综合发展部)丨86-28-84403600 84406307(新闻中心)
- 传真:86-28-84403677
发布时间:2024-01-15浏览量:922
作者:南秋彩1, 杨柳2 作者单位:1. 黄河交通学院, 河南 焦作 450062;
2. 长沙理工大学, 湖南 长沙 410114
Graph convolutional neural network based traffic prediction
NAN Qiucai1, YANG Liu2
1. Huanghe Jiaotong University, Jiaozuo 450062, China;
2. Changsha University of Science and Technology, Changsha 410114, China
Abstract: Due to the spatial and temporal complexity of the traffic prediction problem, accomplishing prediction in intelligent transportation systems is a challenging task. Although the time dependence of traffic prediction has been well studied and discussed, relatively little research has been done on spatially dependent traffic prediction due to the large variability of spatial dependence, especially in complex urban traffic environments. In this paper, a new graph convolution prediction network model is proposed and applied to two urban traffic networks with different geometric constraints. First, the model performs graph convolution operations on speed data using multiple weighted adjacency matrices to combine features such as speed limits, distances, and road angles. Second, spatially isolated dimensionality reduction operations are performed on the combined features to learn the dependencies between the features and reduce the size of the output to a computationally feasible level. Then, the output of the multi-weighted graph convolutional network is applied to a model with long and short-term memory units to learn temporal dependencies. Finally, the proposed prediction network is applied to two traffic networks in urban core and mixed urban areas, and its performance not only outperforms the remaining six comparative models, but also reduces the prediction variance of the traffic network in mixed urban areas. The results show that the proposed prediction network can provide robust traffic prediction performance under different spatial complexities, which is a strong advantage in urban traffic prediction.
Keywords: defect traffic forecast;graph convolution neural network;reduced dimension convolution;feature learning
2023, 49(9):123-132 收稿日期: 2022-08-28;收到修改稿日期: 2022-10-26
基金项目: 湖南省教育厅重点项目(20A009)
作者简介: 南秋彩(1981-)女,河南郏县人,副教授,硕士,研究方向为交通工程管理
参考文献
[1] 康雁, 谢思宇, 王飞, 等. 基于双路信息时空图卷积网络的交通预测模型[J]. 计算机科学, 2021, 48(S2): 46-51+62
[2] 管星宇, 潘义勇. 基于随机参数线性回归的交通流速度-密度关系模型研究[J]. 森林工程, 2021, 37(5): 90-95
[3] 马晓磊, 孙硕, 丁川, 等. 基于TVP-VAR模型的多模式交通需求耦合分析[J]. 北京航空航天大学学报, 2018, 44(1): 18-26
[4] 张腾飞, 袁鹏程. 基于ARIMA的短时交通量预测模型[J]. 智能计算机与应用, 2020, 10(7): 273-278
[5] 周毅, 胡姝婷, 李伟, 等. 图神经网络驱动的交通预测技术: 探索与挑战[J]. 物联网学报, 2021, 5(4): 1-16
[6] 申雷霄, 陆宇航, 郭建华. 卡尔曼滤波短时交通流预测普通国省道适应性研究[J]. 交通信息与安全, 2021, 39(5): 117-127
[7] 陈亮, 王金泓, 何涛, 等. 基于SVR的区域交通碳排放预测研究[J]. 交通运输系统工程与信息, 2018, 18(2): 13-19
[8] 刘永乐, 谷远利. 基于CNN-BiLSTM的高速公路交通流量时空特性预测[J]. 交通科技与经济, 2022, 24(1): 9-18
[9] 王维强, 牛振东, 曹玉娟, 等. 基于ARMA-TS-GARCH有限混合模型的交通数据分析[J]. 中南大学学报(自然科学版), 2010, 41(05): 1860-1864
[10] LV Y, DUAN Y, KANG W, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(2): 865-873
[11] 张壮壮, 屈立成, 李翔, 等. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265
[12] GUO K, HU Y, QIAN Z, et al. Optimized graph convolution recurrent neural network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(2): 1138-1149
[13] VINAYAKUMAR R, SOMAN K P, POORNACHANDRAN P. Applying deep learning approaches for network traffic prediction[C]//2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017: 2353-2358.
[14] CHAKRABORTY P, ADU-GYAMFI Y O, PODDAR S, et al. Traffic congestion detection from camera images using deep convolution neural networks[J]. Transportation Research Record, 2018, 2672(45): 222-231
[15] YU B, LEE Y, SOHN K. Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)[J]. Transportation research part C:emerging technologies, 2020, 114: 189-204
[16] ZHU J, WANG Q, TAO C, et al. AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting[J]. IEEE Access, 2021, 9: 35973-35983
[17] JIANG M, CHEN W, LI X. S-GCN-GRU-NN: A novel hybrid model by combining a Spatiotemporal Graph Convolutional Network and a Gated Recurrent Units Neural Network for short-term traffic speed forecasting[J]. Journal of Data, Information and Management, 2021, 3(1): 1-20
[18] LI Z, XIONG G, CHEN Y, et al. A hybrid deep learning approach with GCN and LSTM for traffic flow prediction[C]//2019 IEEE intelligent transportation systems conference (ITSC), 2019: 1929-1933.
[19] YAO H, WU F, KE J, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]//Proceedings of the AAAI conference on artificial intelligence. 2018: 3634-3640.
[20] LOGANATHAN G, SAMARABANDU J, WANG X. Sequence to sequence pattern learning algorithm for real-time anomaly detection in network traffic[C]. 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), 2018: 335-342.
[21] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Short-term traffic forecasting: Where we are and where we’re going[J]. Transportation Research Part C:Emerging Technologies, 2014, 43: 3-19
[22] DISSANAYAKE B, HEMACHANDRA O, LAKSHITHA N, et al. A comparison of ARIMAX, VAR and LSTM on multivariate short-term traffic volume forecasting[C]//Conference of Open Innovations Association, 2021 (28): 564-570.
[23] MA X, HAO X, CHEN H. Fuzzy Neural Network-Based Assessment of Road Traffic Situations Using Extracted Information Obtained from Optical High-Resolution Satellite Remote Sensing Images[C]//2020 IEEE International Geoscience and Remote Sensing Symposium, 2020: 148-155.
[24] GENG X, LI Y, WANG L, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]//Proceedings of the AAAI conference on artificial intelligence. 2019, 33(01): 3656-3663.
[25] CUI Z, HENRICKSON K, KE R, et al. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(11): 4883-4894
业内最新资讯动态 请关注微信公众号