《中国测试》期刊群

首页 - 《中国测试》期刊群 - 测控技术2023

基于改进谱聚类算法的低压户变关系识别

发布时间:2024-01-15浏览量:926
作者:李方硕1, 刘丽娜1, 程志炯1, 申杰1, 周一飞1, 熊思宇2 作者单位:1. 国网四川省电力公司计量中心, 四川 成都 610045;
2. 西南交通大学电气工程学院, 四川 成都 611756

Identification algorithm of low voltage user-transformer relationship based on improved spectral clustering
LI Fangshuo, LIU Lina, CHENG Zhijiong, SHEN Jie, ZHOU Yifei, XIONG Siyu
1. State Grid Sichuan Electric Power Company Measurement Center, Chengdu 610045, China;
2. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
Abstract: The accuracy of user-transformer relationship identification plays a key role in the safe and stable operation of the distribution network, and its results directly affect the accuracy of line loss calculation and comprehensive protection of distribution network. The traditional distribution station recognition algorithm cluster the power frequency zero-crossing sequence, which does not perform well when the sequence is ‘non-convex’. Accordingly, an improved spectral clustering algorithm for arbitrary zero-crossing sequences is proposed. The algorithm takes maximizing the variance of the weight matrix (WM) as the objective function of the adaptive particle swarm optimization algorithm, then adaptively selects the parameter threshold of WM to change the WM into a sparse matrix. Thus, the eigenvectors calculation problem of the traditional spectral clustering algorithm is simplified to find the orthogonal null space of the canonical Laplace matrix. the recognition accuracy of the proposed algorithm with sample data obtained by the simulation software can reach 99.11%, which is better than that of the traditional clustering algorithm, and it can still reach 98.71% when processing the measured data.
Keywords: user-transformer relationship identification;improved spectral clustering;adaptive particle swarm optimization;maximize variance;null space
2023, 49(9):128-134  收稿日期: 2022-12-20;收到修改稿日期: 2023-4-14
基金项目: 国家自然科学基金面上项目(51777173);四川省科技计划项目(2021YFG0294);国网四川省电力公司科技项目 (52199720005Z)
作者简介: 李方硕(1986-),男,四川广安市人,高级工程师,硕士,从事电能量采集与电力通信。
参考文献
[1] 杨婧, 辛明勇, 欧家祥, 等. 基于大数据的配电网线损定位与评估方法研究[J]. 中国测试, 2019, 45(7): 19-24.
[2] 董重重, 何行, 孙秉宇, 等. 基于SVM的载波通信调制信号识别方法研究[J]. 中国测试, 2019, 45(11): 101-107.
[3] 于冰. 智能制造模式下电能计量装置运行误差监控[J]. 中国测试, 2020, 46(S1): 119-125.
[4] 阿辽沙·叶, 顾君, 张小秋, 等. 基于数据时空相关性的智能台区识别技术[J]. 现代电子技术, 2018, 41(4): 30-33.
[5] 罗钧腾, 章坚民, 陈耀军, 等. 融合已知相别和地址信息的低压用户计量表箱识别[J]. 电力系统自动化, 2021, 45(9): 115-121.
[6] XIAO Y, JIN X, YANG J F, et al. A user-transformer relation identification method based on qpso and kernel fuzzy clustering[J]. Computer Modeling in Engineering & Sciences, 2021, 126(3): 1294-1313.
[7] 胡卓娅, 翁健. 基于人工蜂群算法的自适应谱聚类算法[J]. 重庆理工大学学报(自然科学), 2020, 34(3): 137-144.
[8] 张要, 马盈仓, 杨小飞, 等. 基于L_(2, 1)-范数距离的约束相似矩阵的聚类算法[J]. 计算机工程与设计, 2021, 42(3): 726-733.
[9] 王森洪, 戴青云, 曹江中, 等. 基于均值的谱聚类特征向量选择算法[J]. 计算机与现代化, 2013(5): 7-9.
[10] 杜婷婷, 文国秋, 吴林, 等. 基于局部协方差矩阵的谱聚类算法[J]. 计算机工程与应用, 2019, 55(14): 148-154+176.
[11] 白璐, 赵鑫, 孔钰婷, 等. 谱聚类算法研究综述[J]. 计算机工程与应用, 2021, 57(14): 15-26.
[12] LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416.
[13] 张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2013.
[14] CRISTIANINI. 模式分析的核办法[M]. 北京: 机械工业出版社, 2006.
[15] 张晓莉, 王秦飞, 冀汶莉. 一种改进的自适应惯性权重的粒子群算法[J]. 微电子学与计算机, 2019, 36(3): 66-70.

  • 地址:四川省成都市玉双路10号
  • 邮箱:zgcsjs@163.com(编辑部) zgcs8440@nimtt.com(综合发展部)
  • 电话:86-28-84404872 84403677 84406505 84404886(编辑部) 86-28-84404108 84406812(综合发展部)丨86-28-84403600 84406307(新闻中心)
  • 传真:86-28-84403677

蜀ICP备11014963号-1 《中国测试》杂志社 版权所有

今日总访问量(单位:次):638503 技术支持:天健世纪

业内最新资讯动态 请关注微信公众号