《中国测试》期刊群

首页 - 《中国测试》期刊群 - 测试仪器2023

基于CFD的超声波水表抗扰流内芯设计优化

发布时间:2024-01-15浏览量:1154
作者:冯建科1, 张元1, 刘正刚2, 于明1 作者单位:1. 青岛乾程科技股份有限公司, 山东 青岛 266100;
2. 山东大学能源与动力工程学院, 山东 济南 250061

CFD-based anti-destabilizaition flow inner core design optimization for ultrasonic water meter
FENG Jianke1, ZHANG Yuan1, LIU Zhenggang2, YU Ming1
1. Qingdao iTechene Technologies Co., Ltd., Qingdao 266100, China;
2. School of Energy and Power Engineering, Shandong University, Jinan 250061, China
Abstract: Based on flow field analysis on ultrasonic wave flow in water meter by using CFD software, anti-disturbance inner core structure that can lower pressure loss and improve measuring precision is designed. Compared with current ordinary water meter inner core, pressure loss △P, measuring section speed standard deviation Eu-std under disturbance working condition and valve relative indication error E, and experimental verification are carried out. The experiment result shows that, under common flow point of water meter, compared with ordinary inner core, when the water meter is installed anti-disturbance inner core, its △P can reduce more than 10 kPa. Valve relative indication error E under maximum disturbance working condition can reduce 1.7%. Furthermore, this articles also researches diversion column length of anti-disturbance inner core, c/D=0.3-1.25, back length e/D=0-0.75 and its influence on △P and Eu-std. The result shows that, within the research scope, when c/D=0.7, e/D=0.4, the comprehensive performance effect is good, pressure loss is 41 kPa, and after installing valve the maximum relative indication error Emax is 2.1%.
Keywords: ultrasonic flowmeter;anti-destabilizaition flow inner core;numerical calculation;speed standard deviation;pressure loss
2023, 49(9):139-145  收稿日期: 2022-05-01;收到修改稿日期: 2022-07-13
基金项目:
作者简介: 冯建科(1981-),男,山东济宁市人,高级工程师,主要从事超声波计量仪表方面的开发
参考文献
[1] JI J Q, ZHENG J Y, CHEN G F, et al. Numerical and experimental studies on the influences of flow field on the measurement accuracy of ultrasonic water meters[J]. Measurement:Sensors, 2021, 18: 100137
[2] 陈文琳, 丁昭, 王海同. 汇管对气体超声流量计计量性能的影响[J]. 中国测试, 2021, 47(10): 161-168
[3] 贾惠芹, 王成云, 党瑞荣. 流体流速对超声波流量测量精度的影响及校准[J]. 仪器仪表学报, 2020, 41(7): 1-8
[4] 王旺, 刘源, 胡鹤鸣, 等. 基于超声传播时间的水位精测技术[J]. 中国测试, 2022, 48(4): 35-41+52
[5] LYNNWORTH L C, LIU Y. Ultrasonic flowmeters: Halfcentury progress report, 1955-2005[J]. ltrasonics, 2006, 44: 1371-1378
[6] 李冬, 苑修乐, 杜广生, 等. 超声波流量计中反射装置的声-固耦合分析[J]. 仪器仪表学报, 2015, 36(9): 945-952
[7] 邵欣, 王涛, 高芦宝, 等. 基于CFD的超声波气体流量计过渡区内流场检测优化研究[J]. 中国测试, 2021, 47(10): 114-122
[8] 刘永辉, 杜广生, 陶莉莉, 等. 反射装置对超声波流量计水流特性影响的研究[J]. 仪器仪表学报, 2011, 32(5): 1183-1188
[9] BARTON N A, BOAM D. Velocity distribution effects on ultrasonic flowmeterspart determination by computational and experimental methods [R]. National Engineering Laboratory, 2002, 38: 99
[10] 陈利琼, 谢虹雅, 孙靖云, 等. 基于CFD的气体超声流量计计量准确性研究[J]. 中国测试, 2019, 45(7): 87-91
[11] 付涛, 姜晓峰, 戚清. 偏心型均速稳流器: CN0408 607U[P]. 2015-01-07.
[12] 张力新, 严学智, 魏月友, 等. 一种超声波测量装置的整流结构: CN212539293U[P]. 2021-02-12.
[13] 李雅侠, 张元, 张静, 等. 射流强化螺旋通道内流体流动与换热的数值模拟[J]. 过程工程学报, 2020, 20(8): 896-903
[14] SHIH T H, LIOU W W, SHABBIT A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Compute Fluids, 1995, 24: 227-238

  • 地址:四川省成都市玉双路10号
  • 邮箱:zgcsjs@163.com(编辑部) zgcs8440@nimtt.com(综合发展部)
  • 电话:86-28-84404872 84403677 84406505 84404886(编辑部) 86-28-84404108 84406812(综合发展部)丨86-28-84403600 84406307(新闻中心)
  • 传真:86-28-84403677

蜀ICP备11014963号-1 《中国测试》杂志社 版权所有

今日总访问量(单位:次):638503 技术支持:天健世纪

业内最新资讯动态 请关注微信公众号