科研活动
论文名称
Measurement of air kerma rate and ambient dose equivalent rate using the G(E) function with hemisphe
发表刊物
Nuclear Science and Techniques
发表年度
2018
论文作者
黄平
承担单位
辐射所
收录情况
关键词
摘要
Since the room-temperature detector CdZnTe (CZT) has advantages in terms of detection efficiency, energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation detectors such as cerium chloride doped with lanthanum bromide (LaBr 3 (Ce)), thallium doped with cesium iodide (CsI (Tl)), thallium doped with sodium iodide (NaI (Tl)), and high-purity germanium (HPGe) primarily use the spectroscopy-dose rate function (G(E)) to achieve the accurate measurement of air kerma rate ( K a ) and ambient dose equivalent rate ( H *(10) ). However, the spectroscopy-dose rate function has been rarely measured for a CZT detector. In this study, we performed spectrum measurement using a hemispherical CZT detector in a radiation protection standards laboratory. The spectroscopy-dose rate function G(E) of the CZT detector was calculated using the least-squares method combined with the standard dose rate at the measurement position. The results showed that the hemispherical CZT detector could complete the measurement of air kerma rate ( K a ) and ambient dose equivalent rate ( H* (10)) by using the G(E) function at energies between 48 keV and 1.25 MeV, and the relative intrinsic errors were, respectively, controlled within ± 2. 3 and ± 2. 1%.